Low-rank optimization with trace norm penalty

نویسندگان

  • Bamdev Mishra
  • Gilles Meyer
  • Francis R. Bach
  • Rodolphe Sepulchre
چکیده

The paper addresses the problem of low-rank trace norm minimization. We propose an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank optimization is characterized by an efficient factorization that makes the trace norm differentiable in the search space and the computation of duality gap numerically tractable. The search space is nonlinear but is equipped with a Riemannian structure that leads to efficient computations. We present a second-order trust-region algorithm with a guaranteed quadratic rate of convergence. Overall, the proposed optimization scheme converges superlinearly to the global solution while maintaining complexity that is linear in the number of rows and columns of the matrix. To compute a set of solutions efficiently for a grid of regularization parameters we propose a predictor-corrector approach that outperforms the naive warm-restart approach on the fixed-rank quotient manifold. The performance of the proposed algorithm is illustrated on problems of low-rank matrix completion and multivariate linear regression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discussion: Latent variable graphical model selection via convex optimization

I want to start by congratulating Professors Chandrasekaran, Parrilo and Willsky for this fine piece of work. Their paper, hereafter referred to as CPW, addresses one of the biggest practical challenges of Gaussian graphical models—how to make inferences for a graphical model in the presence of missing variables. The difficulty comes from the fact that the validity of conditional independence r...

متن کامل

Latent Variable Graphical Model Selection via Convex Optimization

I want to start by congratulating Professors Chandrasekaran, Parrilo and Willsky for this fine piece of work. Their paper, hereafter referred to as CPW, addresses one of the biggest practical challenges of Gaussian graphical models—how to make inferences for a graphical model in the presence of missing variables. The difficulty comes from the fact that the validity of conditional independence r...

متن کامل

Trace Lasso: a trace norm regularization for correlated designs

Using the `1-norm to regularize the estimation of the parameter vector of a linear model leads to an unstable estimator when covariates are highly correlated. In this paper, we introduce a new penalty function which takes into account the correlation of the design matrix to stabilize the estimation. This norm, called the trace Lasso, uses the trace norm of the selected covariates, which is a co...

متن کامل

Estimation of Simultaneously Sparse and Low Rank Matrices

The paper introduces a penalized matrix estimation procedure aiming at solutions which are sparse and low-rank at the same time. Such structures arise in the context of social networks or protein interactions where underlying graphs have adjacency matrices which are block-diagonal in the appropriate basis. We introduce a convex mixed penalty which involves `1-norm and trace norm simultaneously....

متن کامل

A High-resolution DOA Estimation Method with a Family of Nonconvex Penalties

The low-rank matrix reconstruction (LRMR) approach is widely used in direction-of-arrival (DOA) estimation. As the rank norm penalty in an LRMR is NP-hard to compute, the nuclear norm (or the trace norm for a positive semidefinite (PSD) matrix) has been often employed as a convex relaxation of the rank norm. However, solving a nuclear norm convex problem may lead to a suboptimal solution of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013